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Abstract

The Walczak formula is a very nice tool for understanding the geometry of a Riemannian manifold equipped with two orthogonal
complementary distributions. M. Svensson [Holomorphic foliations, harmonic morphisms and the Walczak formula, J. London
Math. Soc. (2) 68 (3) (2003) 781–794] has shown that this formula simplifies to a Bochner-type formula when we are dealing
with Kähler manifolds and holomorphic (integrable) distributions. We show in this paper that such results have a counterpart in
Sasakian geometry. To this end, we build on a theory of (contact) holomorphicity on almost contact metric manifolds. Some other
applications for (pseudo-)harmonic morphisms on Sasaki manifolds are outlined.
c© 2006 Elsevier B.V. All rights reserved.

MSC: 53D15; 53D10; 53C56; 53C12; 58E20

Keywords: (Almost) contact manifolds; Sasakian manifolds; Distribution; Holomorphicity

1. Introduction

Throughout this paper M , N etc. will be connected, C∞ manifolds. All geometric objects considered will also be
smooth.

The analogue of an almost Hermitian structure on odd-dimensional spaces is the almost contact metric structure.
We recall the necessary definitions, cf. [3]:

Definition 1.1. An almost contact structure on a (2n + 1)-dimensional manifold M is a triple (φ, ξ, η) where φ is a
(1, 1) tensor field, ξ is a vector field and η is a 1-form satisfying the following relations:

φ2
= −I + η ⊗ ξ, η(ξ) = 1.

A manifold M together with an almost contact structure is called an almost contact manifold. ξ is called the
characteristic vector field.

An almost contact metric structure (φ, ξ, η, g) is an almost contact structure together with a compatible metric
(which always exists), that is a metric g satisfying:

g(φX, φY ) = g(X, Y )− η(X)η(Y ).
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If, in addition, η is a contact form (i.e. η ∧ (dη)n 6= 0) and g is an associated metric (i.e. dη(X, Y ) = g(X, φY )),
then our structure is a contact metric structure. In this case ξ coincides with the Reeb field of the contact form η.

A contact metric structure whose (1,1)-tensor φ is normal:

[φ, φ](X, Y )+ 2dη(X, Y )ξ = 0 (1.1)

is called Sasakian.

Sasakian structures are the analogue of Kähler structures on odd-dimensional manifolds. The Sasakian condition
is equivalent to the integrability of the corresponding almost complex structure on the Riemannian cone over M ,
cf. e.g. [4].

The normality equation (1.1) is equivalent to the following one:

(∇Xφ)Y = g(X, Y )ξ − η(Y )X, (1.2)

which makes the analogy with the Kähler case transparent: indeed, it is enough to take in both members of (1.2) the
component tangent to the contact distribution D = Ker η, for X, Y ∈ Γ (D), and then we obtain a parallelism-type
condition for φ. This is in fact the transversally Kähler condition.

An almost contact structure has a natural transversal holomorphic structure, transversality being here understood
with respect to the foliation defined by the characteristic field. In the language of G-structure, this is an H1,n-structure,
cf. [16].

The paper is organized as follows. In Section 2 we study invariant (under the action of φ) distributions on almost
contact manifolds. In Section 3 we study the notion of a holomorphic distribution (in particular, a holomorphic
vector field), which is automatically φ-invariant. We show how this notion is related to holomorphicity on the cone.
Section 4 is devoted to holomorphicity on normal almost contact manifolds, especially on Sasakian manifolds. Finally,
in Section 5 we apply our theory of holomorphicity to derive results in Riemannian geometry: applications of the
Walczak formula and properties of some particular harmonic morphisms.

2. Invariant distributions on almost contact metric manifolds

In analogy with the definition of a complex distribution on an almost Hermitian manifold we give:

Definition 2.1. Let (M, φ, ξ, η, g) be an almost contact metric manifold. A distribution V on M is called invariant if
φ(V) ⊆ V .

Remark 2.1. 1. D := Ker η is an invariant distribution.
2. On an almost contact metric manifold, a distribution V is invariant if and only if its orthogonal complementary

distribution H is also invariant.

The proof follows from the anti-symmetry of φ. Let X ∈ Γ (H), V ∈ Γ (V); we have:

g(φX, V ) = g(φ2 X, φV )+ η(φX)η(V ) = g(−X + η(X)ξ, φV )

= −g(X, φV )+ η(X)η(φV ) = −g(X, φV ).

By hypothesis, φV ∈ Γ (V), so the last term is zero, which implies that φX is orthogonal to V , for every V ∈ Γ (V).
This means φX ∈ Γ (H).

Note that, unlike in the Hermitian case, an invariant distribution can be even or odd dimension as well. In particular,
the dimensions of two complementary invariant distributions on M2n+1 cannot have the same parity.

The position of the characteristic field ξ with respect to an invariant distribution is subject to some restrictions:

Lemma 2.1. On an almost contact metric manifold with an invariant distribution V , the vector field ξ must be in
Γ (V) or in Γ (H), where H = V⊥.

Moreover, if ξ ∈ Γ (V), then H ⊆ D.

Proof. Let ξH, ξV denote respectively the H and V components of ξ (the exponent V or H will always indicate
the orthogonal projections onto these distributions). Then 0 = φξ together with the invariance of H and V implies
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φξH = 0, φξV = 0. But Kerφ is one-dimensional and therefore, if ξH and ξV were both non-zero, they would be
collinear, a contradiction.

The second statement follows from η(X) = g(X, ξ) = 0, for all X ∈ Γ (H). �

On the other hand, the characteristic vector field ξ is tangent to any invariant submanifold of a contact metric
manifold (cf. [3, p. 122]), so one expects the same phenomenon to occur for (integrable) invariant distributions. We
have indeed:

Proposition 2.1. On a contact metric manifold M2n+1 endowed with an invariant distribution V any of the following
conditions implies ξ ∈ Γ (V):
(i) dim(V) = 2k + 1, k ≤ n;
(ii) V is integrable.

In particular, an integrable invariant distribution must be odd-dimensional.

Proof. (i) By Lemma 2.1, it is enough to prove that ξ is not in Γ (H).
If ξ ∈ Γ (H), then H admits (local) frames of the type {ξ, X i , φ(X i )}, so it is odd-dimensional, like V , a

contradiction.
(ii) Suppose that ξ ∈ Γ (H). Then, from Lemma 2.1, V ⊆ D, where D is the contact distribution. So, for any

V,W ∈ Γ (V), we have

g(V, φW ) = dη(V,W ) =
1
2

[Vη(W )− Wη(V )− η([V,W ])] = −
1
2
η([V,W ]) = 0,

the last equality being a consequence of the integrability of V . We conclude that φW is orthogonal to V , a
contradiction. Hence ξ cannot be in Γ (H). As Lemma 2.1 shows also that ξ cannot be a “mixed” sum either, the
proof is complete.

(Note that we have not used all the contact structure information, but only that g is an associated metric.) �

Example 2.1. On R2n+1 with the standard contact metric structure, the distribution Vk (k ≤ n) locally spanned by

X i = 2
∂

∂yi , Xn+i = 2
(
∂

∂x i + yi ∂

∂z

)
and possibly ξ (i = 1, k)

is an invariant distribution of dimension 2k, or 2k + 1 if it contains ξ .

For further use we next prove a relation between the Lie derivative and the covariant derivative of the tensor φ,
similar to the relation (3.1) in [14]. The following relation is easily derived:

g(∇φZ X, V ) = g(X, (LVφ − ∇Vφ)Z)− g(X, φ∇Z V ).

Using here the anti-symmetry of φ, the fact that ∇ is a metric connection and also g(φX, V ) = 0 (because H is an
invariant distribution), we prove:

Proposition 2.2. Let (M, φ, ξ, η, g) be an almost contact metric manifold and V an invariant distribution with
orthogonal complement H. For any section X of H and any vector field V tangent to V , we have:

g(∇φZ X + ∇ZφX, V ) = g(X, (LVφ − ∇Vφ)Z), ∀Z ∈ Γ (T M). (2.1)

We recall here that the second fundamental form BV and the integrability tensor IV , of V , are defined by:

BV (V,W ) =
1
2
(∇V W + ∇W V )H , IV (V,W ) = [V,W ]

H, V,W ∈ Γ (V).

As for the distribution D, which is invariant, we have:

Remark 2.2. On a contact metric manifold,

BD(X, φY ) = BD(φX, Y ), ∀X, Y ∈ Γ (D).

In particular, D is a minimal distribution. If, in addition, the manifold is K-contact, then D is a totally geodesic
distribution.
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Proof. A result of Olszak [13] states that on a contact metric manifold, we have:

(∇Xφ) Y +
(
∇φXφ

)
φY = 2g(X, Y )ξ − η(Y )(X + h X + η(X)ξ). (2.2)

In particular, if X, Y ∈ Γ (D), the above relation becomes:

∇XφY − φ∇X Y − ∇φX Y − φ∇φXφY = 2g(X, Y )ξ.

Interchanging X and Y , we obtain a similar relation which, subtracted from the one above, gives:

∇XφY + ∇φY X − (∇φX Y + ∇YφX) = φ([X, Y ] + [φX, φY ]).

Taking only the component collinear with ξ , we get the stated relation for the second fundamental form of D. This
implies also BD(φX, φY ) = −BD(X, Y ) that assures trace BD = 0 (i.e. D is minimal).

If, in addition, the manifold is K-contact, ξ is Killing, so the induced foliation Fξ is Riemannian, which is
equivalent to the fact that the orthogonal distribution D is totally geodesic. �

The Sasaki condition imposes further restrictions on B:

Proposition 2.3. Let (M, φ, ξ, η, g) be a Sasaki manifold endowed with an invariant distribution V which contains
ξ . Let H be the orthogonal complement of V . Then the following relations hold:

2
(

BV (U, φV )− φBV (U, V )
)

= φ(IV (U, V ))− IV (U, φV ), ∀U, V ∈ Γ (V). (2.3)

In particular:

2BV (U, ξ)+ IV (U, ξ) = 0; BV (φU, ξ) = φ
(

BV (U, ξ)
)
, ∀U ∈ Γ (V).

Proof. Note that ξ ∈ Γ (V) implies H ⊆ D. The result now follows from the definitions and the Sasaki condition:
∇UφV = φ∇U V + g(U, V )ξ − η(V )U .

For the second assertion, put V = ξ in formula (2.3) and for the last one, take into account the fact that on a Sasaki
manifold we have (Lξφ)X = 0. �

If V is integrable, we recover the formulas for invariant submanifolds stated in [18, p. 49]:

Corollary 2.1. If N is an invariant submanifold of a Sasaki manifold M, then:

(i) B(X, ξ) = 0,
(ii) B(X, φY ) = B(φX, Y ) = φB(X, Y ) for any vector field X tangent to N (here B denotes the second fundamental

form of the submanifold).

3. Infinitesimal holomorphicity on normal almost contact manifolds

3.1. Definitions and first properties

Definition 3.1. Let (M, φ, ξ, η) be a normal almost contact manifold. A (local) vector field X on M is called contact-
holomorphic if

(LXφ)Y = η ([X, φY ]) ξ, ∀Y ∈ Γ (T M). (3.1)

A distribution V on M is called contact-holomorphic if it admits, around every point, a local frame consisting of
contact-holomorphic vector fields.

When the context does not impose distinctions, we shall simply write holomorphic instead of contact-holomorphic.
Holomorphicity of X means collinearity of (LXφ)Y with ξ : the particular form of the coefficient of ξ , generally

denoted by αX (Y ), results from this collinearity condition.
The next result shows the φ-invariance of the above defined holomorphicity (unlike the usual property

(LXφ)Y = 0):
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Lemma 3.1. Let X be a holomorphic vector field on a normal almost contact metric manifold. Then φX is also
holomorphic. In particular, a holomorphic distribution is necessarily invariant.

Proof. An explicit formula for the Lie derivative of φ with respect to φX is provided by the following reformulation
of the Eq. (1.1):

(LφXφ)Y = φ(LXφ)Y − 2dη(X, Y )ξ.

Hence, if X holomorphic, then the above equation gives us:

(LφXφ)Y = −2dη(X, Y )ξ.

We now verify that the coefficient of ξ is the same as the one predicted by the definition. Recall that αX (Y ) =

η ([X, φY ]), so we have to show that:

αφX (Y ) = η ([φX, φY ]) = −2dη(X, Y ).

But the normality of φ assures that

N (2)
= 0 ⇔ η ([φX, Y ] + [X, φY ]) = φX (η(Y ))− φY (η(X)).

In the above relation we replace Y with φY and we obtain:

η ([φX, φY ] − [X, Y ] + η(Y )[X, ξ ] + X (η(Y ))ξ) = Y (η(X))− η(Y )ξ(η(X)),

which reduces to

η ([φX, φY ])+ X (η(Y ))− Y (η(X))− η([X, Y ]) = −η(Y )(ξ(η(X))− η([ξ, X ])).

Finally we use N (4)
:= (Lξη)X = 0 to derive

η ([φX, φY ]) = −2dη(X, Y ). �

Remark 3.1. (i) From the above proof we obtain an alternative expression for the collinearity factor αX :

αX (Y ) = −η ([φX, Y ])+ φX (η(Y ))− φY (η(X)).

(ii) αX (ξ) = 0 for any holomorphic vector field X . This implies that [X, ξ ] must be collinear with ξ (or,
equivalently, [XD, ξ ] = 0). In other words, X is projectable with respect to the foliation Fξ locally generated by
ξ .

(iii) αξ (Y ) = 0 for any vector field Y . Indeed, the normality of φ implies N (3)
:= (Lξφ)Y = 0, so that ξ is

holomorphic.
(iv) X is holomorphic if and only if [X, ξ ] is collinear with ξ and ((LXφ)Y )D = 0, ∀Y ∈ Γ (D). If M is

Sasakian, these properties define the transversally holomorphic fields, introduced by Nishikawa and Tondeur in [12],
for manifolds endowed with a Kähler foliation.

Proposition 3.1. On a normal almost contact manifold, the set hol(M) of holomorphic vector fields is a Lie
subalgebra of Γ (T M).

Proof. Let X and X ′ be holomorphic vector fields. Then:(
L[X,X ′]φ

)
Y = ([LX ,LX ′ ]φ) Y = LX (LX ′φ) Y − LX ′ (LXφ) Y

= [X, (LX ′φ)Y ] − (LX ′φ)([X, Y ])−
[
X ′, (LXφ)Y

]
+ (LXφ)([X ′, Y ]).

Using the fact that X and X ′ are holomorphic and the remark that [X, ξ ] must be collinear with ξ in this case, we
easily obtain that the projection on D of the above expression is zero. Hence [X, X ′

] is also holomorphic. �

On closed Sasakian manifolds with constant transversal scalar curvature, the structure of hol(M) is established in
analogy with the Kähler case, cf. [12].
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Example 3.1. On R2n+1 with the standard contact metric structure, take an arbitrary vector field written in an adapted
frame as

X = α
∂

∂z
+ β i

(
∂

∂x i + yi ∂

∂z

)
+ γ i ∂

∂yi ,

where summation is taken with i = 1, n. Note that β i and γ i are the coefficients of ∂
∂x i and of ∂

∂yi respectively. Then

X is holomorphic if and only if, for any i = 1, n, β i and γ i satisfy the Cauchy–Riemann equations in the variables
x j , y j and are constant in z:

∂β i

∂x j =
∂γ i

∂y j ,
∂β i

∂y j = −
∂γ i

∂x j , j = 1, n,
∂β i

∂z
=
∂γ i

∂z
= 0.

The Corollary 3.3 below shows that the above description of holomorphic vector fields is not an exceptional one.
As in the complex case (see [11], p. 30) we can express the contact-holomorphicity by the vanishing of some ∂̄-

operator. In this case ∂̄ : Γ (T M) −→ End(T M) satisfies the Leibniz rule and is expressed as follows with respect to
Levi-Civita connection:

∂̄X (Y ) =
1
2
φ

(
∇Y X + φ∇φY X − φ(∇Xφ)Y

)
.

One can verify that a vector field X is contact-holomorphic if and only if ∂̄X (Y ) = 0, for all Y . Equivalently,
this means the projectability of X and the vanishing on XD of a standard (transversal) ∂̄-operator appropriate to D
as T ⊥Fξ . Explicitly: ∂̄DX (Y ) =

1
2

(
∇
D
Y X + φ∇

D
φY X − φ(∇DX φ)Y

)
, for all Y ∈ Γ (D), where ∇

D is the adapted

connection in D in the sense of Tondeur [17]. Therefore we are dealing with a transversal, projectable notion of
holomorphicity for vector fields on M regarded as a foliated manifold (with the foliation Fξ ).

In the Sasaki case, the above formula reduces to:

∂̄X (Y ) =
1
2
φ

(
∇Y X + φ∇φY X

)
, for Y ∈ Γ (D) and ∂̄X (ξ) = φ([ξ, X ]).

3.2. The holomorphicity condition seen on the cone

Recall that the cone C(M) over an almost contact manifold (M2n+1, φ, ξ, η) is M2n+1
×R with an almost complex

structure defined by:

J

(
X, f

d
dt

)
=

(
φX − f ξ, η(X)

d
dt

)
.

We point out that the above formula fits the well-known construction of an almost contact structure on orientable
hypersurfaces of almost complex manifolds (if we take the standard immersion of M into the cone C(M) at t = 1).
For details, see [3, Example 4.5.2].

Proposition 3.2. Let (M, φ, ξ, η, g) be a normal almost contact metric manifold. As a vector field on the cone over
M, (X, f d

dt ) is holomorphic if and only if, for any Y ∈ Γ (T M), the following relations are satisfied:

(i) (LXφ)Y = Y ( f )ξ ;
(ii) X (η(Y ))− η ([X, Y ])− φY ( f )− η(Y ) d f

dt = 0;

(iii) [X, ξ ] +
d f
dt ξ = 0;

(iv) ξ( f ) = 0.

Hence, if (X, f d
dt ) is holomorphic on the cone, then X is a contact-holomorphic vector field on M. Moreover, we

have the following implications:

“(i) ∧ (iii) ⇒ (ii)” and “(i) ⇒ (iv)”.
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Proof. One can derive by straightforward computations the following formulas:(
L
(X, f d

dt )
J
)
(Y, 0) =

(
(LXφ)Y − Y ( f )ξ,

(
Xη(Y )− η([X, Y ])− φY ( f )− η(Y )

d f

dt

)
d
dt

)
(
L
(X, f d

dt )
J
) (

0,
d
dt

)
=

(
−[X, ξ ] −

d f

dt
ξ, ξ( f )

d
dt

)
.

As the holomorphicity of (X, f d
dt ) is equivalent to the vanishing of both expressions above, the result follows.

Let us prove the second assertion.
The implication “(i) ∧ (iii) ⇒ (ii)” is derived by applying (i) to φY instead of Y . We obtain αX (φY ) = φY ( f ) =

Xη(Y )− η ([X, Y ])− η(Y )η([ξ, X ]). But from (iii) we have η ([ξ, X ]) =
d f
dt , so the relation (ii) follows.

In order to get “(i) ⇒ (iv)”, put Y = ξ in (i): (LXφ)ξ = ξ( f )ξ . But, as X is holomorphic on M , we have already
noticed that (LXφ)ξ = 0 (i.e. αX (ξ) = 0), so our implication follows. �

Corollary 3.1. The contact-holomorphic vector fields on M, which come by projection of the holomorphic fields on
C(M), form a Lie subalgebra of hol(M), denoted by holpr (M). They are contact-holomorphic fields X with two
additional properties:

(a) The 1-form αX is exact: there exists a function f on M such that

Y ( f ) = η ([X, φY ]) , ∀Y ∈ Γ (T M).

(b) η([X, ξ ]) is (locally) constant (i.e. the factor of collinearity between [X, ξ ] and ξ is constant).

Proof. We have seen that, in order to be holomorphic on the cone, a vector field must satisfy only (i) and (iii).
From condition (i) we obtain (a). From (iii), it follows that d f

dt = η([ξ, X ]), so f is a linear function in t :
f (p, t) = η([ξ, X ])t + F(p), p ∈ M . In order to verify the equation in (a), such a function must have the coefficient
η([X, ξ ]) (locally) constant, that is (b) holds.

Conversely, if X is a contact-holomorphic vector field on M , which satisfies in addition (a) and (b), then(
X, (η([ξ, X ])t + f ) d

dt

)
is holomorphic on C(M).

In order to see that holpr (M) is a Lie subalgebra, it is enough to note that, on the cone, the holomorphic vector
fields form a Lie algebra and that the following relation holds:[(

X, f
d
dt

)
,

(
X ′, g

d
dt

)]
=

(
[X, X ′

],

(
X (g)− X ′( f )+ f

dg

dt
− g

d f

dt

)
d
dt

)
. �

Remark 3.2. The subalgebra, holpr (M) contains all vector fields along which φ is invariant: LXφ = 0.

The nature of the constraints (a) and (b) becomes very clear when expressed in local coordinates for the case of
R2n+1:

Example 3.2. On R2n+1 with the standard contact metric structure, let X = α ∂
∂z + β i ∂

∂x i + γ i ∂
∂yi be a holomorphic

vector field.
Then X ∈ holpr (R2n+1) if and only if, in addition, the coefficient α takes the form: α = Cz + H(xi , yi ), where H

is a harmonic function and C ∈ R.

Remark 3.3. The relation between contact-holomorphicity on the Sasaki manifolds and holomorphicity on its Kähler
cone can also be obtained using the relations between the Levi-Civita connections on M and C(M), and ∇ ∇̄,
respectively (for the details, see [4]). Identifying X on M with (X, 0) on the cone, one can prove the following
formula:

(LX J )Y = (LXφ)Y − [X (rη(Y ))+ rη([X, Y ])] ∂r . (3.2)

Indeed, we have the following sequence of identities (where Ψ := r∂r is the Euler field on the cone):

(LX J )Y = ∇̄X JY − J ∇̄X Y − ∇̄JY X + J ∇̄Y X

= ∇̄X (φY − η(Y )Ψ)− J (∇X Y − rg(X, Y )∂r )− ∇̄φY−η(Y )Ψ X + J (∇Y X − rg(Y, X)∂r )
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= ∇̄XφY − X (η(Y ))Ψ − η(Y )∇̄XΨ − J∇X Y − ∇̄φY X + ∇̄η(Y )Ψ X + J∇Y X

= ∇XφY − rg(X, φY )∂r − X (η(Y ))Ψ − η(Y )

[
X (r)∂r + r

1
r

X

]
− φ(∇X Y )+ η(∇X Y )Ψ − ∇φY X + rg(X, φY )∂r + η(Y )X + φ(∇Y X)− η(∇Y X)Ψ .

This in turn implies formula (3.2).

Corollary 3.2. On a normal almost contact metric manifold (M, φ, ξ, η, g) we have:

(i) aξ is a contact-holomorphic vector field, for any function a defined on M (so aξ ∈ hol(M), but it is not necessarily
the case that aξ ∈ holpr (M));

(ii) (ξ, c d
dt ) is a holomorphic vector field on the cone if and only if c is a constant.

Proof. (i) A consequence of normality of φ (see [3]) is that (Lξφ)Y = 0. Now, it is an easy task to compute
(Laξφ)Y = a(Lξφ)Y − φY (a)ξ and to notice that αaξ (Y ) = −φY (a)ξ , so the assertion is proved.

(ii) The argument is obvious. �

3.3. Holomorphicity on Sasakian manifolds

Recall that on a Riemannian manifold, an arbitrary vector field V induces a derivation AV (a tensor field of type
(1, 1)), defined by: AV (X) := ∇X V . In the complex case, AV is J -linear if and only if V is holomorphic. In our case
something similar is happening:

Proposition 3.3. On a Sasaki manifold (M2n+1, φ, ξ, η, g) we have:

(i) V is holomorphic if and only if

(AV ◦ φ − φ ◦ AV ) (X) is collinear with ξ, for all X ∈ Γ (D)
and also if: VD = φ∇ξV (which is equivalent to: [X, ξ ] collinear with ξ ).

(ii) If M2n+1 is compact and regular and X is a contact-holomorphic vector field on M2n+1, then π∗ X is
holomorphic, where π : M2n+1

−→ M2n represents the Boothby–Wang fibration. Conversely, the horizontal
lift of any holomorphic vector field on M2n is a contact-holomorphic vector field on M2n+1.

In particular, the contact distribution on such a Sasaki manifold is holomorphic.

Proof. (i) Using the Sasaki condition (1.2) and assuming (3.1) (V is holomorphic), we derive:

∇φX V = φ∇X V − η(X)V + (g(V, X)− η([V, φX ])) ξ.

From this, the stated collinearity follows immediately.
Conversely, we can verify that η

(
∇φX V

)
= g(V, X) − η([V, φX ]) and thereafter we can conduct the same

calculation backwards to obtain the holomorphicity condition (3.1).
(ii) As a direct consequence of the fact that the Boothby–Wang fibration is a Riemannian submersion and satisfies

also π∗φX = Jπ∗ X , one gets the relation

(Lπ∗ X J )π∗Y = π∗(LXφ)Y,

for all projectable vector fields X, Y . Note also that (horizontal) contact-holomorphic vector fields on M2n+1 are, by
definition, projectable ([XD, ξ ] = 0). The result now follows, as ξ spans Kerπ∗. �

A source of examples of holomorphic vector fields is the following:

Proposition 3.4. Let (M, φ, ξ, η, g) be a contact metric manifold. Then any two of the following conditions imply the
third one:

(i) (LX g)(Y, Z) = 0, ∀Y, Z ∈ Γ (D),
(ii) iX dη is a closed form,

(iii) X is a holomorphic vector field.
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Moreover, a vector field X on M is a Killing vector field, which commutes with ξ if and only if X is a holomorphic
vector field which is also a strict infinitesimal contact transformation (i.e. LXη = 0).

Proof. The first assertion is a consequence of the following relation:

(LX g) (Y, φZ) = (LX dη) (Y, Z)− g(Y, (LXφ)Z).

For the second assertion we apply the results obtained by Tanno in [16, Th. 3.1 and Prop. 3.6], because the holomorphic
vector fields which are also strict infinitesimal contact transformations are precisely those for which LXφ = 0. �

Remark 3.4. The first assertion in the above proposition can be reformulated in the following terms, adequate to the
foliated structure of the contact metric manifold M :

a contact-holomorphic vector field with zero transversal divergence is a transversal Killing vector field.

Clearly, this is a similar result to the “if” part of the Bochner–Yano theorem in the Kähler case, cited in [9, p. 93]. The
converse is also true on closed Sasakian manifolds, cf. [12].

We recall (in Tondeur’s notation, see [17]) that transversal divergence of an infinitesimal automorphism of a
foliation is defined by the relation Θ(X)vol = divB X · vol, where vol is a holonomy invariant transversal volume
(vol = dηn , in our case).

The following analogy with the complex case will be very helpful for local considerations:

Proposition 3.5. On a normal almost contact metric manifold M2n+1 there always exist (local) adapted frames
consisting of contact-holomorphic vector fields.

Proof. Note first that on the cone over M the vector fields (ξ, 0) and
(

0, d
dt

)
are (real) holomorphic. Moreover, by

construction,
(

iξ, d
dt

)
∈ TCC(M) is a holomorphic vector field on the complexified tangent space of the cone.

But in our hypothesis, C(M) is a complex manifold so its tangent bundle is holomorphic and then admits local

frames of complex holomorphic sections. We can always complete
(

iξ, d
dt

)
to such a frame.

Let
{(

X j , f j
d
dt

)
− iJ

(
X j , f j

d
dt

)
| j = 1, n

}
be such a local completion.

We want to prove that {ξ, XDj , φXDj | j = 1, n} is an independent family, so it represents a local adapted

frame for M , consisting of contact-holomorphic vector fields. Observe that
(

X j , f j
d
dt

)
− iJ

(
X j , f j

d
dt

)
=(

X j − iφX j + i f jξ, ( f j − iη(X j ))
d
dt

)
.

Let us now verify that
{

XDj − iφXDj | j = 1, n
}

forms an independent family over C, consisting of complex

holomorphic fields. (In the following, the Einstein convention will be used.) Suppose λ j (XDj − iφXDj ) = 0. Then we
have successively:

λ j
(

XDj − iφXDj , 0
)

= 0,

λ j (
X j − iφX j − η(X j )ξ, 0

)
= 0,

λ j (
X j − iφX j + i f jξ, 0

)
− λ j ((i f j + η(X j ))ξ, 0) = 0,

λ j
(

X j − iφX j + i f jξ, ( f j − iη(X j ))
d
dt

)
− λ j

(
(i f j + η(X j ))ξ, ( f j − iη(X j ))

d
dt

)
= 0

and finally

λ j
[(

X j , f j
d
dt

)
− iJ

(
X j , f j

d
dt

)]
− λ j (

f j − iη(X j )
) (

iξ,
d
dt

)
= 0.

But this is a linear combination of the vectors that form the complex holomorphic frame on the cone. Therefore,
λ j

= 0 for all j = 1, n.
Now a simple trick will give us the linear independence over R of the family {XDj , φXDj | j = 1, n}.
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Suppose that α j XDj +β jφXDj = 0. Then −β j XDj +α jφXDj = 0. Together, these relations give α j XDj +β jφXDj −

i(−β j XDj + α jφXDj ) = 0 which is equivalent to (α j
+ iβ j )(XDj − iφXDj ) = 0, and hence (α j

+ iβ j ) = 0 ⇒ α j
=

β j
= 0, the relation we wanted to prove.
The argument that ξ is transversal to D completes the proof. �

A direct computation proves:

Corollary 3.3. On a normal almost contact manifold, let {ξ, Ei , φEi } be a (local) adapted frame consisting of
contact-holomorphic vector fields. Then a vector field X = αξ + β i Ei + γ iφEi is holomorphic if and only if,
for all i = 1, n, β i and γ i satisfy the generalized Cauchy–Riemann equations:

E j (β
i ) = φE j (γ

i ), E j (γ
i ) = −φE j (β

i ), j = 1, n

and are constant along the flow of ξ (i.e. ξ(β i ) = ξ(γ i ) = 0).

3.4. The flow of a contact-holomorphic vector field

Definition 3.2. A map ψ : (M, φ, ξ, η, g) −→ (M ′, φ′, ξ ′, η′, g′) between almost contact manifolds is called
contact-holomorphic if

dψ ◦ φ(X)− φ′
◦ dψ(X) is collinear with ξ ′, ∀X ∈ Γ (T M).

As before, the word contact in the above notion will be omitted when no confusion is possible.

Remark 3.5. If ψ is holomorphic, then dψ(ξ) must be collinear with ξ ′. To see this, put X = ξ in the formula of the
above definition.

In particular, the contact-holomorphic maps between normal almost contact manifolds are transversally
holomorphic as maps between foliated manifolds with transversally holomorphic foliations, according to [2] (i.e. πD′ ◦

dψ |D is holomorphic in the usual sense, that is (πD′ ◦ dψ |D) ◦ φ|D = φ′
|D′ ◦ (πD′ ◦ dψ |D), where πD stands for

the orthogonal projection on the corresponding distribution).

Proposition 3.6. The flow of a contact-holomorphic vector field on a normal almost contact manifold M consists of
contact-holomorphic transformations on M.

Proof. Observe first that the flow of a holomorphic vector field
(

X, f d
dt

)
on M × R decomposes as follows:

Ψs = (ψs, ψ
t
s ), where ψs can be regarded as the flow of X on M and ψ t

s : M × R −→ R, s ∈ Iε satisfies

the differential equation: dψ t
s

ds = f (ψs, ψ
t
s ). But we know that if

(
X, f d

dt

)
is holomorphic on the cone (which is a

complex manifold in this case), then its flow Ψs must be a holomorphic transformation on the cone. We then have
successively:

dΨs ◦ J

(
Y, h

d
dt

)
= J ◦ dΨs

(
Y, h

d
dt

)
,

dΨs

(
φY − hξ, η(Y )

d
dt

)
= J

(
dψs(Y ), dψ t

s (Y )+ h
∂ψ t

s

∂t

d
dt

)
,(

dψs(φY − hξ), dψ t
s (φY − hξ)+ η(Y )

∂ψ t
s

∂t

d
dt

)
=

(
φ(dψs(Y ))−

[
Y (ψ t

s )+ h
∂ψ t

s

∂t

]
ξ, η(dψs(Y ))

d
dt

)
,

dψs(φY )− φ(dψs(Y )) = hdψs(ξ)−

[
Y (ψ t

s )+ h
∂ψ t

s

∂t

]
ξ

and

φY (ψ t
s )− hξ(ψ t

s )+ η(Y )
∂ψ t

s

∂t
= η(dψs(Y )).
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But these two relations must hold also for Y = 0, that is: dψs(ξ) =
∂ψ t

s
∂t ξ and ξ(ψ t

s ) = 0. So the above relations
reduces to

dψs(φY )− φ(dψs(Y )) = −Y (ψ t
s )ξ.

Taking into account that ξ(ψ t
s ) = 0, the last equation implies, for Y = ξ , that dψs(ξ) is collinear with ξ .

All in all, for the flow of X we have obtained precisely the condition of being a contact-holomorphic transformation.
Moreover we can see what, geometrically, the factor of collinearity with ξ means. �

Remark 3.6. A contact-holomorphic map between Sasakian manifolds is transversally harmonic and an absolute
minimum for the energy ET in its foliated homotopy class, according to [2] (see also [10]).

3.5. The G-structures viewpoint

At the end of this section we shall stress the connection between a certain G-structure of almost contact manifolds
and the contact-holomorphicity, which we have been discussing until now (for general definitions, see [9]).

The existence of an almost contact (metric) structure on a manifold M2n+1 is equivalent to the existence of a
(U (n) × 1)-structure which clearly is not integrable (even when φ is normal). The normality of φ reflects in the
integrability of another G-structure of M2n+1, namely the H1,n-structure, called also the transversal holomorphic
structure (for notation and details, see [6]). The infinitesimal automorphisms of the H1,n-structure are precisely the
contact-holomorphic vector fields that we have dealt with, so far. In a system of (local) distinguished coordinates
(u, z j , z j ), these vector fields take the form

X = a(u, z j , z j )
∂

∂u
+ bk(u, z j , z j )

∂

∂zk + bk(u, z j , z j )
∂

∂zk , where
∂bk

∂z j = 0 and
∂bk

∂u
= 0.

If, in addition, M2n+1 is contact, passing from these coordinates to Darboux coordinates will not respect the H1,n-
structure, so the distinguished coordinates and above local expression for X will be not at all suited for the study of
strict contact geometric properties of M2n+1.

4. Complex holomorphicity on normal almost contact manifolds

In this section we stress the notion of holomorphic vector field in the complex context. If (M, φ, ξ, η, g) is a normal
almost contact metric manifold, then the complexified tangent bundle admits a natural split:

TCM = T 0 M ⊕ T (1,0)M ⊕ T (0,1)M,

where T (1,0)M = {X − iφX | X ∈ Γ (D)}, T (0,1)M = T (1,0)M and T 0 M = SpC{ξ} are the eigenspaces of φ
corresponding to the eigenvalues i,−i and 0.

Definition 4.1. On an almost contact manifold (M, φ, ξ, η), a smooth function f : M −→ C will be called
holomorphic if d f ◦ φ = i · d f .

Proposition 4.1. Let f : M −→ C be a smooth function on a normal almost contact manifold M. Then the following
statements are equivalent:

(i) f is holomorphic,
(ii) Z( f ) = 0, for all Z ∈ T 0 M ⊕ T (0,1)M,

(iii) d f ∈ Λ(1,0)B M, where Λ(1,0)B M comes from the natural splitting of the complexification of the sheaf of basic

1-forms on M: Λ1
B ⊗ C = Λ(1,0)B ⊕ Λ(0,1)B , cf. [5].

In addition, if ψ : M −→ M is a holomorphic map, then f ◦ ψ is a holomorphic function on M.

Proof. In order to prove “(i) ⇔ (ii)”, we have simply to remark that d f (ξ) = 0 (so ξ( f ) = 0) and then the rest of the
proof will be similar to the complex case:

d f (φX) = id f (X) ⇔ id f (X + iφX) = 0 ⇔ (X + iφX)( f ) = 0, ∀X ∈ Γ (T M).
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In the proof of “(i) ⇔ (iii)” it suffices to verify that d f is a basic 1-form. We have already seen that d f (ξ) = 0. It
remains to compute:

(Lξd f )(X) = ξ(d f (X))− d f ([ξ, X ]) = ξ(X ( f ))− [ξ, X ]( f ) = X (ξ( f )) = 0.

For the last assertion, we have to do a simple verification:

d( f ◦ ψ)(φX) = d f (dψ(φX)) = d f (φ(dψ(X))+ aξ) = d f (φ(dψ(X))) = id f (dψ(X)). �

Definition 4.2. On a normal almost contact metric manifold M , Z ∈ T 0 M ⊕ T (1,0)M will be called complex
holomorphic if Z( f ) is holomorphic for any (local) holomorphic function f on M .

Proposition 4.2. Z = aξ + X − iφX ∈ T 0 M ⊕ T (1,0)M is complex holomorphic if and only if X is holomorphic (in
the expression for Z, a is a complex valued function and X ∈ Γ (D)).

Proof. Let Z = aξ + X − iφX be a complex holomorphic vector field and f a holomorphic function on M . We have
seen that (X + iφX)( f ) = 0, so Z( f ) = (X − iφX)( f ) = 2X ( f ) must be a holomorphic function. This means also
that: (Y + iφY )(X ( f )) = 0,∀Y ∈ T M .

From all this we can deduce that: [Y + iφY, X ]( f ) = 0 (for an arbitrary holomorphic function f ), which in turn
implies: [Y + iφY, X ] ∈ T 0 M ⊕ T (0,1)M .

But, for any W = aξ + Y + iφY ∈ T 0 M ⊕ T (0,1)M , we have: Im(W )D = φ(Re(W )D). In our case,
Im ([Y + iφY, X ]) = [φY, X ] and Re ([Y + iφY, X ]) = [Y, X ]. So we must have:

[φY, X ]
D

= φ([Y, X ]
D) ⇔ ((LXφ)Y )

D
= 0

and this means that X is holomorphic.
Conversely, let X be a holomorphic vector field and f a holomorphic function. We have to show that Z( f ) = (aξ+

X−iφX)( f ) is a holomorphic function too. But Z( f ) = (X−iφX)( f ) = 2X ( f ), because ξ( f ) = (X+iφX)( f ) = 0,
f being holomorphic. According to Proposition 4.1, X ( f ) is holomorphic if and only if (bξ + Y + iφY )(X ( f )) = 0,
for any b complex valued function and Y ∈ Γ (D). In turn, this is equivalent to [bξ + Y + iφY, X ]( f ) = 0 which is
assured by [bξ + Y + iφY, X ] ∈ T 0 M ⊕ T (0,1)M (due to the holomorphicity of X ). �

Analogously to the complex case, we have also:

Proposition 4.3. On a normal almost contact metric manifold, T 0 M ⊕ T (1,0)M and T 0 M ⊕ T (0,1)M are integrable
subbundles of TCM, invariant along the flow of a holomorphic vector field X.

Proof. We have to prove that [aξ + X − iφX, bξ + Y − iφY ] ∈ T 0 M ⊕ T (1,0)M .
A well known result of Ianuş [7] tells us that, in this case, T (1,0)M is involutive. So it remains to prove that

[X − iφX, bξ ] ∈ T 0 M ⊕ T (1,0)M .
Taking into account that Lξφ = 0 (i.e. [ξ, φX ] = φ[ξ, X ],∀X ), we have:

[X − iφX, bξ ] = (X − iφX)(b)ξ + b([X, ξ ] − i[φX, ξ ])

= (X − iφX)(b)ξ + b([X, ξ ] − iφ([X, ξ ]))

∈ T 0 M ⊕ T (1,0)M.

As usual ψs denotes the flow of X . We have:

dψs(aξ + X − iφX) = adψs(ξ)+ dψs(X)− idψs(φX)

= abξ + dψs(X)− i
(
φ(dψs X)+ b′ξ

)
= (ab − ib′)ξ + dψs(X)− iφ(dψs X)

∈ T 0 M ⊕ T (1,0)M. �

Remark 4.1. Note that in Proposition 3.5, we have proved that T 0 M⊕T (1,0)M admits, locally, frames of holomorphic
sections.
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The proof of the following proposition is an easy computation and we shall omit it:

Proposition 4.4. On a Sasaki manifold we always have:

(i) ∇W Z ∈ T 0 M ⊕ T (1,0)M,∀W, Z ∈ T (1,0)M.
(ii) ∇aξ Z ∈ T (1,0)M,∀Z ∈ T (1,0)M.

(iii) ∇W aξ ∈ T 0 M ⊕ T (0,1)M,∀W ∈ T (1,0)M.

In addition, Z ∈ T (1,0)M is a complex holomorphic field if and only if:

∇W Z ∈ T 0 M, ∀W ∈ T (1,0)M and ∇ξ Z = −iZ .

Remark 4.2. The contact (complex) holomorphicity, which we deal with, is more general than the one introduced
by Tanaka in [15]. One can verify that a contact complex holomorphic field from T (1,0)M is holomorphic also in
Tanaka’s sense if, in addition, it preserves the contact distribution, or, equivalently, if φ is invariant along its flow
(i.e. LXφ = 0). This is a rather strong restriction (generally not satisfied in our context).

5. Holomorphic foliations on a Sasaki manifold

Again by analogy with the Kähler case (treated in [14]), in the following we shall stress some properties of
the holomorphic distributions. For the sake of completeness we recall the notion of mixed sectional curvature of
a Riemannian manifold M endowed with two complementary distributions V and H:

smix =

∑
i,α

K M (ei ∧ fα)

where {ei }, { fα} are local orthonormal frames for V and H.

Proposition 5.1. On a Sasaki manifold (M2n+1, φ, ξ, η, g), an invariant holomorphic distribution V of dimension
2p + 1 has the following properties (as usual, H = V⊥):

(i) V(∇φZ X + ∇ZφX) = 0,∀Z ∈ Γ (T M), X ∈ Γ (H).
(ii) φBH(X, Y )+ g(X, Y )ξ =

1
2 IH(X, φY ),∀X, Y ∈ Γ (H).

(iii) |BH|
2
+ 2(n − p) =

1
4 |IH|

2.
(iv) trace BV = 0 (V is a minimal distribution).

Proof. (i) Because M is Sasakian, we have: (∇Vφ)Z = g(V, Z)ξ − η(Z)V . So, for any section X of H and V of
V , the following relation holds: g (X, (∇Vφ)Z) = 0, also because ξ ∈ Γ (V), by Proposition 2.1. Taking this into
account, together with the holomorphicity hypothesis, we derive the relation (i) using Proposition 2.2.

(ii) Using (i), we have:

g

(
1
2

IH(X, φY ), V

)
= g

(
1
2
(∇XφY − ∇φY X), V

)
= g

(
1
2
(∇XφY + ∇YφX), V

)
=

1
2

g(φ∇X Y + g(X, Y )ξ − η(Y )X + φ∇Y X + g(Y, X)ξ − η(X)Y, V )

=
1
2

g(φ(∇X Y + ∇Y X)+ 2g(X, Y )ξ − η(Y )X − η(X)Y, V )

= g
(
φBH(X, Y ), V

)
+ g(X, Y )g(ξ, V ).

The last equality completes the proof because all the terms in the relation (ii) are sections of V and V ∈ V was
arbitrary.

(iii) This formula involving the Hilbert–Schmidt norms of BH and IH is a straight consequence of (ii) if we point
out that:
η(BH(X, Y )) = g

(
BH(X, Y ), ξ

)
= −

1
2 (Lξ g)(X, Y ) = 0, because ξ is a Killing vector field in the Sasakian

context.
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This assures that ‖φBH(X, Y )‖ = ‖BH(X, Y )‖.
In order to compute |IH|

2, it is worth noticing that ξ ∈ Γ (V) implies H ⊆ D. So, for a local frame of H of the
type {ei , φei }, we shall have: φ2ei = −ei .

(iv) The relation (2.3) can be rewritten as follows:

2
(

BV (U, φV )− φBV (U, V )
)

= − [(LUφ)V ]H , ∀U, V ∈ Γ (V).

For a (contact-)holomorphic field U , we get: BV (U, φV ) = φBV (U, V ), which implies immediately
BV (U, φV ) = BV (φU, V ).

Using also that [U, ξ ] is collinear with ξ when U is holomorphic (so IV (U, ξ) = 0), again from Proposition 2.3
we obtain:

BV (U, V )+ BV (φU, φV ) = 0, ∀U, V ∈ hol(M).

Therefore, in a local frame of holomorphic vector fields, we will have:

trace BV = ∇ξ ξ +

∑
i

H
[
∇ei ei + ∇φeiφei

]
= 0. �

Proposition 5.2. Under the same hypothesis as above, the Walczak formula (see [19]) simplifies to:

divV trace BH + 2(n − p)+
1
4
|IV |

2
= smix + |BV |

2. (5.1)

Proof. Recall that, for an arbitrary Riemannian manifold (M, g) with two orthogonal complementary distributions V
and H, the Walczak formula asserts:

divV trace BH + divHtrace BV +
1
4
|IH|

2
+

1
4
|IV |

2
= smix + |BH|

2
+ |BV |

2.

Now, applying (iii) and (iv) from Proposition 5.1, the result follows. �

Remark 5.1. When V is integrable, Eq. (5.1) reduces to:

divV trace BH + 2(n − p) = smix + |BV |
2. (5.2)

Integrating (5.2) along any compact leaf, we get the following:

Theorem 5.1 (Bochner-type Result). Let (M2n+1, φ, ξ, η, g) be a Sasaki manifold with a (2p + 1)-dimensional
holomorphic foliation such that smix ≥ 2(n − p). Then smix = 2(n − p) along every compact leaf and every compact
leaf is a totally geodesic submanifold of M. In particular, if smix > 2(n − p), then V cannot have compact leaves.

Corollary 5.1. Let (M2n+1, φ, ξ, η, g) be a compact Sasaki manifold with the sectional curvature k ≥ 2m (m < n).
Then every (φ, J )-holomorphic submersion from M into any Hermitian manifold N 2m has totally geodesic fibers.

Other results such as Propositions 3.8 and 3.9 in [14], dealing with holomorphic conformal foliations, can also be
restated, now in a obvious way, for the Sasakian case.

It is worth noticing that the (φ, J )-holomorphic submersions on Sasaki manifolds into a Kähler manifold are in
fact a special class of pseudo-harmonic morphisms, with very nice geometric properties, cf. [1].

Proposition 5.3. Let (M2m+1, φ, ξ, η, g) be a Sasaki manifold. Then every (φ, J )-holomorphic submersion ψ , from
M onto a Kähler manifold (N 2n, J, gN ), is a pseudo-horizontally homothetic (PHH) harmonic morphism.

In particular, it has minimal fibers and the inverse images of complex submanifolds in N are invariant, and so
minimal, submanifolds of M. If in addition m = n, then the horizontal distribution (of the submersionψ),H, coincides
with the contact distribution on M (in particular H cannot be integrable).
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Proof. The harmonicity of such submersions has been remarked already in [8]. Then we have to verify the PHWC
condition (Pseudo-Horizontal Weak Conformality) and the PHH one.

The first condition simply means that the induced almost complex structure on the horizontal bundle (defined by
JH = dψ−1

◦ J ◦ dψ) is compatible with the metric g. That is indeed the case, because H ⊂ D (due to ξ ∈ Γ (V))
and JH coincides with φ restricted to H (due to the (φ, J )-holomorphicity of ψ).

The second (PHH) condition means that JH is parallel in horizontal directions with respect to ∇
H, so it satisfies a

partial Kähler condition. To see this we have to particularize the formula (1.2) for X, Y ∈ Γ (H) ⊂ Γ (D) and to take
the H-part of both sides of the relation. �
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